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A general theoretical background is introduced for characterization of conformational motions in protein
molecules, and for building reduced coarse-grained models of proteins, based on the statistical analysis of their
phase trajectories. Using the projection operator technique, a system of coupled generalized Langevin equa-
tions is derived for essential collective coordinates, which are generated by principal component analysis of
molecular dynamic trajectories. The number of essential degrees of freedom is not limited in the theory. An
explicit analytic relation is established between the generalized Langevin equation for essential collective
coordinates and that for the all-atom phase trajectory projected onto the subspace of essential collective degrees
of freedom. The theory introduced is applied to identify correlated dynamic domains in a macromolecule and
to construct coarse-grained models representing the conformational motions in a protein through a few inter-
acting domains embedded in a dissipative medium. A rigorous theoretical background is provided for identi-
fication of dynamic correlated domains in a macromolecule. Examples of domain identification in protein G are
given and employed to interpret NMR experiments. Challenges and potential outcomes of the theory are
discussed.
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I. INTRODUCTION

Biological macromolecules show a tremendous range of
various useful functionalities. The well-defined architecture
of polymers combined with soft texture, their precise recog-
nition power, and outreach diversity make biopolymers
unique natural building blocks for targeted drug delivery,
sensing, diagnostics, actuating systems, and molecular elec-
tronics. However, many biopolymer-based nanotechnologies
are still in the stage of early infancy. A part of the reason for
this is an insufficient understanding of structure and func-
tionalities of organic macromolecules. Proteins are complex
soft-matter systems containing thousands of atoms and apt to
change their spatial conformation both spontaneously and
through interactions with environment. One largely unsolved
challenge for theoretical description and modeling is the
need to account for many internal degrees of freedom in
large polymer molecules. Currently, theoretical understand-
ing of the conformational behaviors of proteins lags signifi-
cantly behind the practical needs.

This paper introduces a general theoretical background
for characterization and comparison of conformational mo-
tions in protein molecules. Section II briefly outlines the ex-
isting statistical technique to extract essential collective de-
grees of freedom from atomic trajectories; Sec. III introduces
a general derivation of dynamic equations of motion for es-
sential collective modes in a protein molecule; in Sec. IV, the
introduced formalism is applied to define coarse-grained
models representing the conformational motions in a protein
through a few dynamic domains, with examples given for
protein G; Sec. V discusses challenges and potential further
developments of the theory; and Sec. VI summarizes the
conclusions.

II. ATOMIC TRAJECTORIES, ESSENTIAL COLLECTIVE
COORDINATES, AND FLUCTUATIONS

Trajectories of individual atoms in a macromolecule are
provided, with a reasonable precision, by molecular dynam-

ics simulations. Thus, positions of individual atoms in a sys-
tem composed of a protein embedded in a solvent, and con-
taining the total of N atoms, can be represented by one vector

in the 3N-dimensional phase space, X� = (X1 ,X2 , . . . ,X3N),
were Xi are the coordinates of individual atoms. The time
evolution of this vector provides the trajectory in the phase

space, X� �t�= (X1�t� ,X2�t� , . . . ,X3N�t�), which represents the
change of the conformation in the protein. However, capa-
bilities to characterize and compare the various conforma-
tions from the molecular dynamics trajectories are rather lim-
ited. A part of the problem is that the information provided
by direct molecular dynamics simulations is highly redun-
dant and must be appropriately filtered in such a way that
essential dynamic characteristics emerge.

Statistical ranking of complex dynamic systems is avail-
able through well-established techniques of the principal
component analysis �PCA� �1�. When PCA is applied to the
phase trajectory of a protein molecule �2–7�, the covariance
matrix is constructed,

cij = ��Xi�t� − �Xi���Xj�t� − �Xj���traj, �1�

where the averaging is over the entire trajectory �8�. For this

covariance matrix, the normalized eigenvectors E� k

= �E1
k ,E2

k , . . . ,E3N
k � and the eigenvalues �k �k=1,2 , . . . ,3N�

are defined by

	
j

cijEj
k = �kEi

k. �2�

The eigenvectors E� 1 ,E� 2 , . . . ,E� 3N represent a set of 3N or-
thogonal collective degrees of freedom. One can consider the
eigenvectors as the intrinsic coordinate frame in the phase

space and project on them the phase trajectory X� �t� �2�:
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�X� �t� · E� k� = 	
i=1

3N

Ei
kXi�t� = xk�t�, k = 1,2, . . . ,3N . �3�

The functions xk�t� defined by Eq. �3� can be viewed as the
collective coordinates that represent the conformational be-
havior of the protein molecule together with the solvent
around it. The inverse operation provides the initial trajecto-
ries of the atoms, Xi�t�:

	
k=1

3N

xk�t�Ei
k = Xi�t�, i = 1,2, . . . ,3N . �4�

The eigenvalues defined by Eq. �2�, �k, represent the mean-
square displacements. The conventional approach is to rank
the collective degrees of freedom according to the magnitude
of the associated eigenvalues and to consider a truncated

coordinate frame E� 1 ,E� 2 , . . . ,E� kmax, kmax�3N, which includes
only those collective coordinates that have the highest mag-
nitude of the displacements �2–7,9,10�. This truncated coor-
dinate frame is also known at the essential degrees of free-
dom �5,6�. The complementary set of collective coordinates,

E� kmax+1 ,E� kmax+2 , . . . ,E� 3N, are interpreted as small-amplitude
fluctuations. The essential degrees of freedom and those as-
sociated with fluctuations can be viewed as two orthogonal
subspaces of 3N-dimensional phase space. Accordingly, Eq.
�4� can be replaced by a system of two complementary equa-
tions

	
k=1

kmax

xk�t�Ei
k = Xi

E�t� ,

	
k=kmax+1

3N

xk�t�Ei
k = Xi

1−E�t� , �5�

where the Xi
E�t� represents the essential component of atomic

trajectories and Xi
1−E�t� represents the fluctuations. At every

moment of time, the essential component and the fluctuation
component of the atomic coordinates can be considered as

orthogonal vectors in the phase space, X� E and X� 1−E, respec-
tively, such that

X� = X� E + X� 1−E. �6�

This representation of the vector X� by two orthogonal com-
ponents can be efficiently accomplished using the Mori pro-
jection operator formalism �11�. Thus, consider the operator

P that converts the vector X� into X� E and the complementary

operator 1− P that converts X� into X� 1−E:

PX� = X� E,

�1 − P�X� = X� 1−E. �7�

One can easily check that the operators P and 1− P are de-
fined by

PX� = 	
k=1

kmax

�E� k · X� �E� k,

�1 − P�X� = 	
k=kmax+1

3N

�E� k · X� �E� k. �8�

From Eq. �8� it follows that the operators P and 1− P applied

to the vector X� can be interpreted as the geometrical projec-

tions of the vector X� onto the subspace of the essential de-
grees of freedom and on the subspace of the fluctuations,
respectively. This can be illustrated by the following simple
examples:

PX� E = X� E,

PX� 1−E = 0,

�1 − P�X� E = 0,

�1 − P�X� 1−E = X� 1−E. �9�

Accordingly, the functions X� E�t� and X� 1−E�t� can be viewed

as projections of the phase trajectory X� �t� onto the subspace
of essential degrees of freedom and onto the subspace of
fluctuations, respectively.

The truncated set of essential degrees of freedom has been
extensively employed to study proteins �12�, and such stud-
ies have provided valuable information about the geometry
of the conformational changes �2–7�. However, this formal-
ism alone is insufficient to characterize the conformational
motions. Thus, the formalism does not contain any physical
criterion that would allow identifying the set of essential
degrees of freedom for a particular protein. Ranking of the
collective coordinates according to the associated mean-
square displacements only compares the displacements rela-
tive to each other and does not identify, what is the “suffi-
cient” value of the displacement for a coordinate to be
essential. A physical criterion for distinguishing the essential
motion still needs to be derived. Furthermore, protein iso-
forms sometimes show only minor geometrical differences
and yet have dramatically different functionalities. Composi-
tion of solvent is another factor, whose impact is difficult to
capture by analyzing the geometry of the phase trajectory
alone. Thus, the dynamics of the collective motions needs to
be addressed in addition to their characterization through sta-
tistical techniques.

III. DYNAMICS OF CONFORMATIONAL MOTIONS
IN MACROMOLECULES

The incremental effort to create a theory of conforma-
tional dynamics in proteins is represented, for example, by
Refs. �4,9,13–21� and citations therein. Thus, it has been
suggested to describe dynamics of proteins by the classic
Langevin equations of motion, with the dynamic variables
represented by either the essential collective coordinates x
�4,19� or by the Cartesian coordinates of atoms X �14�. Ac-
cordingly, significant effort has been invested into evaluation
of the potentials of mean force �9,19� and friction or diffu-
sion coefficients �4,13,15,16,19� that define the dynamics of
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a protein molecule embedded in a solvent. Several authors
proposed employing the generalized Langevin equation as a
more comprehensive model for proteins �15,17,18�. In the
recent study �21�, an analogy with the Mori projection op-
erator formalism �11� has been employed to postulate that
motion along the collective coordinates can be described by
the generalized Langevin equation as well. Based on this
assumption, an approach has been developed that represents
protein dynamics by motion along a single collective coordi-
nate that has been derived through the PCA technique �21�.
However, applicability of the generalized Langevin equation
to the essential degrees of freedom extracted from molecular-
dynamic trajectories has not been proven rigorously. In par-
ticular, the relation between the Langevin equation for Car-
tesian coordinates of atoms in the protein and those for the
collective essential coordinated derived through PCA have
not been established. Also the restriction of the theory to a
single collective degree of freedom is too a crude approxi-
mation for realistic proteins. Below a general ab initio for-
malism is developed to characterize dynamics of proteins
based on the multivariate analysis of their atomistic trajecto-
ries.

A. Equations of motion for the projected Cartesian
coordinates of atoms Xi

E
„t…

Consider a system composed of a protein embedded in a
solvent and containing N atoms. The phase trajectory of

the entire system is given by the vector X� �t�
= �X1�t� ,X2�t� , . . . ,X3N�t��, which is a function of time. The
Cartesian coordinates of atoms, Xi, obey the equations of

motion, Ẍi=mi
−1Fi, where mi are the masses of atoms and Fi

are the forces acting along the coordinates Xi. This system of
3N equations can be represented by

X�̈ = m−1F� �X� � , �10�

where m is a diagonal matrix providing the masses of atoms.

Employing Eq. �6�, one can write F� �X� �=F� �X� E+X� 1−E�, where

X� E and X� 1−E are, respectively, the projections of the phase
trajectory onto the subspace of essential degrees of freedom
and onto that of the fluctuations, as explained in Sec. II. By

definition, X� 1−E represents minor changes in atoms’ positions
as compared to a more pronounced essential motion given by

X� E. Accordingly, one can use the Taylor expansion for the
force in Eq. �10�,

F� �X� � = F� �X� E + X� 1−E�


 F� �X� E� +
�F� �X� E�

�X� E
X� 1−E

= F� �X� E� − KX� 1−E. �11�

Here, F� �X� E� is the mean force, KX� 1−E represents fluctuations
of the force, and K is the matrix with the elements Kij

=−
�Fi

�Xj
. The exact equation of motion �10� can thus be re-

placed with the approximation

X�̈ = m−1�F� �X� E� − KX� 1−E� . �12�

Next, the projection operators P and 1− P defined by Eq. �7�
are applied to both sides of Eq. �12�, which gives the equa-

tions of motion for X� E and X� 1−E, respectively:

X�̈ E = Pm−1�F� �X� E� − KX� 1−E� , �13�

X�̈ 1−E = �1 − P�m−1�F� �X� E� − KX� 1−E� , �14�

where Eq. �9� has been taken into account. The new opera-
tors Pm−1 and �1− P�m−1 that appear in the right-hand sides
of Eqs. �13� and �14� represent the mass-weighted projec-
tions onto the subspaces of the essential motions and fluc-
tuations, respectively.

To proceed further an assumption is required, that the co-

ordinates X� 1−E change significantly faster that X� E, so that the
elements of the matrix K in Eq. �14� can be considered as
constants �this implies that the fluctuations can also be con-
sidered as an ensemble of harmonic high-frequency oscilla-

tions�. This makes Eq. �14� solvable with respect to X� 1−E, for
example, through the Laplace transform technique. Skipping
standard but cumbersome intermediate steps, the general so-
lution of Eq. �14� is given by

X� 1−E�t� = �
0

t

Z�t − ���1 − P�m−1F� „X� E���…d�

+ R� „t,X� 1−E�0�,X�̇ 1−E�0�… . �15�

The first term in right-hand side of Eq. �15� has the form of
the memory integral with the damping kernel Z�t�, which in
a general case is a nondiagonal matrix �22�. The expression

�1− P�m−1F� �X� E� under the integral represents the mass-

weighted projection of the force F� �X� E� acting within the sub-
space of essential motions onto the subspace of fluctuations.
This can be rephrased as coupling of the fluctuations with the
essential degrees of freedom. The second term in the right-
hand side of Eq. �14�, which is symbolically represented by

the vector R� , is a linear combination of harmonic functions

of time �26� weighted with the values of X� 1−E�0� and X�̇ 1−E�0�
at the initial time t=0. R� can be viewed as the contribution of

random noise to X� 1−E.
In the case when the harmonic oscillations representing

the fluctuations are coupled bilinearly with a slower and con-
ceivably anharmonic essential motion �23–29�, the solution
of Eq. �14� is

X� 1−E�t� = �
0

t

ŻH�t − ��X� E���d� + R� H�t� , �16�

which can be rewritten, equivalently,
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X� 1−E�t� = ZH�0�X� E�t� − ZH�t�X� E�0�

− �
0

t

ZH�t − ��X�̇ E���d� + R� H�t� . �17�

This approximation is known in the literature as the model of
harmonic bath, or bath of harmonic oscillators �25–29�, and
has been suggested as a reasonable approach to handle the
fluctuations in macromolecules �25,28�. Details regarding the
form of the damping kernel ZH�t� and the random function

R� H�t� for the model of harmonic bath can be found, for ex-
ample, in Refs. �24,26�. Substitution of Eq. �17� into the
right-hand side of Eq. �13� provides the equation of motion

for the projected coordinates X� E�t�,

X�̈ E = Pm−1�F� �X� E� + KZH�0�X� E�t� − K�
0

t

ZH�t − ��X�̇ E���d�

− KZH�t�X� E�0� + KR� H�t� , �18�

which can be converted into a form that resembles the gen-
eralized Langevin equation,

X�̈ E = Pm−1�−
�U�X� E�

�X� E
− �

0

t

ZX�t − ��X�̇ E���d� + R� X�t� ,

�19�

where

�U�X� E�

�X� E
= − F� �X� E� − KZH�0�X� E�t� ,

ZX�t� = KZH�t� ,

R� X�t� = − KZH�t�X� E�0� + KR� H�t� . �20�

Here U�X� E� is the potential of mean force, the expression

−�o
t ZX�t−��X�̇ E���d� is the dissipative force with the memory

kernel ZX�t�, and R� X�t� can interpreted as the random force,

in the sense that R� X�t� does not depend on the dynamics of
the system considered �23� and satisfies the requirements
�RX,i�t��=0 and �RX,i�0�RX,j�t��=�−1ZX,ij�t� �17,26�. The final
step is rewriting of Eq. �19� in the form of the set of equa-
tions of motion for 3N atomic coordinates Xi

E:

Ẍi
E�t� = − 	

j=1

3N

Mij
−1 �U

�Xj
E − 	

l=1

3N �
0

t

�il�t − ��Ẋl
E���d� + �i�t�,

i = 1,2, . . . ,3N . �21�

Here

Mij
−1 = 	

k=1

kmax

Ei
kEj

kmj
−1, �22�

�il�t� = 	
j=1

3N

Mij
−1ZX,lj�t� , �23�

�i�t� = 	
j=1

3N

Mij
−1RX,j�t� . �24�

The system of equations of motion �21� describes trajectories
for all atoms in the system, projected onto the subspace of
essential degrees of freedom. The first term on the right-hand
side represents a “purely” essential motion defined by the
mean force −�U /�Xj

E and by the effective mass Mij. The
other terms on the right-hand side describe the influence of
fluctuations onto the essential motion. The fluctuations mani-
fest themselves in the form of the dissipative force

−�0
t �il�t−��Ẋl

E���d� and the random force �i�t�. It is note-
worthy that the 3N atomic degrees of freedom are coupled
through the summations in the right-hand side of Eq. �21�.

B. Equations of motion for the essential collective
coordinates xk

„t…

The system of generalized Langevin equations �21� de-
scribes the trajectories of all N atoms in the protein �and also
in the solvent around it�. Although the trajectories have been
projected to be representative of essential motions in the sys-
tem, still 3N coupled Cartesian coordinates are involved in
the theory. To build efficient coarse-grained models, the
number of coordinates must be decreased. This can be
reached if the collective coordinates xk are considered in-
stead of the Cartesian coordinates of individual atoms XE

�see Eq. �3� for the definition of xk�. Indeed, the collective
coordinates can be ranked according to the respective mean-
square displacements and the truncated set of collective co-
ordinates can be considered as explained in Sec. II. By the
analogy with the theory of chemical kinetics �29�, it has been
suggested in the literature to consider the conformation
changes in a protein as a generalized chemical reaction and
view the functions xk�t� as the generalized reaction coordi-
nates that represent the conformation changes �4,9,10�. Each
of these generalized conformational coordinates represents
one of the collective degrees of freedom in the system. Be-
low the equations of motion are derived for a set of essential
collective coordinates, x1 ,x2 , . . . ,xkmax. The number of the
essential coordinates, kmax, is not determined or limited at
this point; however, it is assumed that kmax�3N. This is
consistent with the reported analysis of mean-square dis-
placements in peptide molecules �2–7,9,28�, which shows
that in most cases, only five to ten essential collective coor-
dinates are responsible for 70%–90% of the total mean-
square displacement.

The essential collective coordinates xk can be obtained
through the following projection:

�X� E · E� k� = 	
i=1

3N

Ei
kXi

E = xk, k = 1,2, . . . ,kmax. �25�

The equations of motion for xk�t� are provided by a similar
projection applied to both sides of Eq. �19�,
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�X�̈ E · E� k� = ẍk = �E� k · Pm−1�−
�U�X� E�

�X� E

− �
0

t

ZX�t − ��X�̇ E���d� + R� X�t�� . �26�

To convert Eq. �26� into a more convenient form, some
modifications are required. First, let us note that for an arbi-

trary vector Y� , �E� k · PY� �=	l=1
kmax�E� k ·E� l��E� l ·Y� �= �E� k ·Y� �, and

thus the operator P on the right-hand side of Eq. �22� can be

omitted. Second, by definition, X� E=	k=1
kmaxE� kxk, which leads to

the change of variables �U

�X� E
=	k=1

kmaxE� k �U
�xk . Third, it is conve-

nient to introduce the vectors x�k=E� kxk and f�k=−E� k �U
�xk , which

represent, respectively, the kth essential collective coordinate
and the mean force associated with it. With these improve-
ments, the equation of motion for xk becomes

ẍk = 	
l=1

kmax

�E� k · m−1f�l� − 	
l=1

kmax �
0

t

�E� k · m−1ZX�t − ��x�̇l����d�

+ �E� k · m−1R� X�t�� . �27�

The right-hand side of Eq. �27� can also be represented in the
scalar form

ẍk = − 	
l=1

kmax

�kl
−1�U

�xl − 	
l=1

kmax �
0

t

	kl�t − ��ẋl���d� + rk�t�,

k = 1,2, . . . ,kmax, �28�

where

�kl
−1 = 	

i=1

3N

Ei
kEi

lmi
−1, �29�

�U

�xk = 	
i=1

3N

Ei
k �U

�Xi
E , �30�

	kl�t� = 	
i,j=1

3N

Ei
kEj

lmj
−1ZX,ij�t� , �31�

rk�t� = 	
i=1

3N

Ei
kmi

−1RX,i�t� . �32�

Equation �28� describes conformational motions in a protein
in terms of statistically independent collective coordinates xk.
However, from Eq. �28� it is evident that any essential col-
lective coordinate xk is coupled dynamically to all other es-
sential collective coordinates in the system. Coupling of the
terms representing the mean forces −�kl

−1�U /�xk is provided
by the matrix of effective mass �kl

−1, and coupling of the
dissipative forces −�	kl�t−��ẋl���d� is provided by the
memory matrix 	kl�t�. In a general case, both matrices are
nondiagonal and thus coupling is present. However, two
cases exist when the equation of motion �28� can be simpli-
fied. In the first case, all atoms in a hypothetic system have

the same mass m. In practice, this is encountered when only
trajectories of C
 atoms are considered. Then, the matrix �kl

−1

becomes diagonal,

��kl
−1�k=l = m−1,

��kl
−1�k�l = 0, �33�

and the first term on the right-hand side of Eq. �28� reduces
to simply −m−1�U /�xk; e.g., coupling of the mean forces is
eliminated. Coupling of the dissipative forces remains, how-
ever. Another, even simpler case occurs when a single essen-
tial coordinate is sufficient to describe the system �kmax=1�
�21�. Only under this assumption is the equation of motion
�28� confined to a single collective degree of freedom. Note
that in this case the effective mass is given by

�−1 = 	
i=1

3N

�Ei
1�2mi

−1 �34�

and can be interpreted as a weighted average of the masses
of atoms, with the weights equal to �Ei

1�2. Thus, the value
�Ei

1�2 represents a measure of involvement of the ith atomic
degree of freedom in the collective dynamics of the system.

IV. EXAMPLE OF APPLICATION: IDENTIFICATION
OF CORRELATED DYNAMIC DOMAINS

AND DERIVATION OF EQUATIONS
FOR THE DOMAIN DYNAMICS

One of the major and largely unsolved problems in the
theory of protein dynamics is representation of the collective
motion in terms of particular domains containing atoms that
move in a coherent way. Despite a rather common expecta-
tion, the essential collective coordinates do not represent any
particular groups of atoms explicitly �30�. Efforts at identifi-
cation of dynamic domains based on molecular simulations
of proteins have been recently reviewed in Ref. �31�. Diffi-
culties arise even with the very definition of domains, which
vary from paper to paper, and sometimes include rather
vague criteria such as being a visually recognizable substruc-
ture in the protein �31�. In the most elaborate approach
�32–36� dynamic domains are defined as rigid bodies and
identified by clustering of translations and rotations of el-
ementary building blocks. The problem of this approach,
however, is that the elementary building blocks, such as re-
siduals or groups of atoms, must be postulated a priori. Fur-
thermore, the differences in motion that need to be captured
are very subtle and susceptible to uncertainties, such as the
high-frequency fluctuations. In order to eliminate the random
fluctuations, various filtering procedures are sometimes ap-
plied in parallel with the motions’ clustering �35–37�. As a
result, the methodologies of domain identification become
computationally expensive and overwhelmingly complex.
Results of domain identification depend on the assumptions
made, particular techniques employed, sampling schemes ap-
plied at multiple intermediate steps, etc., which makes such
results difficult to reproduce and interpret �31�. A universal
and dynamically justified concept for identification of dy-
namic domains has not been suggested.
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Based on the theory developed in this paper, a simple and
physically transparent formalism of domain identification is
introduced below, with examples for protein G. The ap-
proach does not employ any a priori assumptions regarding
the structure of domains or their elementary building blocks
and does not require any additional noise filtering since the
domains are identified in the space of essential collective
motions. Because the methodology of domain identification
is based on a rigorous theoretical background, it can be em-
ployed as a starting point for further theoretical development.
Thus, a system of generalized Langevin equations is derived
in this work that describes motion of the correlated domains.

A. Definition of dynamic correlated domains

Consider the equations of motion for the projected trajec-
tory �19�. It is convenient to represent Eq. �19� in the form

X�̈ E = PY� , �35�

where

Y� = m−1�−
�U�X� E�

�X� E − �
0

t

ZX�t − ��X�̇ E���d� + R� X�t� .

According to Eq. �8�, the projection operator P employs a
number of mathematical operations involving the essential

collective eigenvectors E� k. These result in coupling of the
projected atomic degrees of freedom through the matrices of
effective mass Mij and memory kernel �il�t� �see Eqs.
�21�–�23��. It is therefore clear that any correlations in the
system are implicitly present in the structure of the projec-
tion operation P, and these correlations can be identified
through an analysis of the operator P as well as of the essen-

tial collective eigenvectors E� k that it employs.
To better understand, which kind of analysis is required to

identify the correlations, let us consider the kth essential col-

lective eigenvector, E� k= �E1
k ,E2

k , . . . ,E3N
k �. By definition, the

values Ei
k represent direction cosines of the vector E� k in the

3N-dimensional phase space. The values Ei
k can also be

viewed as the projections of the vector E� k onto Cartesian
degrees of freedom of individual atoms. Since the system
considered contains N atoms, the entire set of direction co-
sines �E1

k ,E2
k , . . . ,E3N

k � can be subdivided into N subsets each
containing three values �En,x

k ,En,y
k ,En,z

k �, where n=1, . . . ,N.
Each of these subsets contains direction cosines relative x, y,
and z Cartesian degrees of freedom of an individual atom.
Each collective eigenvector can therefore be represented by

E� k = 	
n=1

N

E� n
k , �36�

where E� n
k = �En,


k � and 
=1, 2, or 3 denotes the degrees of
freedom x, y, and z. Employing Eq. �36� in the projection
operator P on the right-hand side of Eq. �35� leads to

PY� = 	
k=1

kmax

	
n2=1

N

�E� n2

k · Y� � 	
n1=1

N

E� n1

k �37�

or, in scalar form,

�PY� �n1,
 = 	
n2=1

N

	
�=1

3

Cn1,
,n2,�Yn2,�, �38�

where

Cn1,
,n2,� = 	
k=1

kmax

En1,

k En2,�

k . �39�

Recall that the summations in the right-hand side of Eq. �38�
represent coupling between particular atomic degrees of free-
dom.

The direction cosines En,

k in Eq. �39� can adopt positive,

negative, or zero values. In the first case, the collective mode

represented by E� k is in phase with the atomic degree of free-
dom �n ,
�, in the second case it is in antiphase, and in the
third case there is no correlation. From the discussion in Sec.
III B it follows that the magnitude �En,


k � is representative of
the level of the correlation; the larger �En,


k � is, the stronger is
the involvement of the atomic degree of freedom �n ,
� into
the collective mode k. Since the direction cosines En,


k rep-
resent correlations of collective degrees of freedom with in-
dividual atomic degrees of freedom, it is natural to define
correlated domains as groups of atoms for which the values
En,


k have a similar magnitude for each of the essential col-
lective degrees of freedom k �38�. Accordingly, the cross-
correlation terms in Eqs. �38� and �39� can be classified into
two categories.

�i� The atoms n1 and n2 belong to the same domain and
their Cartesian degrees of freedom are similar �
=��. In this
case, the coefficients Cn1,
,n2,� given by Eq. �39� are nonzero

and positive, because En1,

k =En2,�

k for all k, and En1,

k �0 for

at least some k �38�. Occurrences like this can be summa-
rized by

�PY� �n1,

�i� = 	

n2��N��

Cn1,
,n2,
Yn2,
. �40�

Here, � denotes the domain, �N�� denotes the set of atoms in
the domain �, and the expression n2� �N�� means that the
atom n2 belongs to the domain �.

�ii� The atom n1 belongs to a correlated domain �, but the
atom n2 does not belong to this domain, n2� �N��, and/or the
Cartesian degrees of freedom are different, 
��. The con-
tributions of such cases are represented by the following ex-
pression:

�PY� �n1,

�ii� = 	

n2=1

N

	
��


Cn1,
,n2,�Yn2,� + 	
n2��N��

Cn1,
,n2,
Yn2,
.

�41�

Now, the values En1,

k and En2,�

k in Eq. �39� can differ in both
magnitude and sign. Accordingly, the coefficients Cn1,
,n2,�

are given by a summation of both positive and negative
terms, which generates smaller values of �Cn1,
,n2,�� than in
the case �i�.

The entire right-hand side of the equation of motion for an
atom in a correlated domain reads
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�PY� �n1,
 = �PY� �n1,

�i� + �PY� �n1,


�ii� . �42�

The first contribution in Eq. �42� describes coupling of de-
grees of freedom which are correlated within a domain,
whereas the second contribution corresponds to coupling of
degrees of freedom which do not show a strong correlation
within the same domain. From the previous discussion it
follows that for domains that weakly interact with each other,
the first contribution is larger than the second one,

��PY� �n1,

�i� �� ��PY� �n1,


�ii� �. In particular cases one can expect

��PY� �n1,

�i� � ��PY� �n1,


�ii� �, so that Eq. �42� can be approximated

by the first contribution alone, �PY� �n1,

�PY� �n1,

�i� .

This result demonstrates the physical meaning of domains
in the present theory. Domains are groups of atoms that show
a strong dynamic coupling in the generalized Langevin equa-
tion of motion. The domains are identified as groups of at-
oms, for which the direction cosines of the essential collec-
tive degrees of freedom En,


k adopt similar values for each k.
Unlike existing approaches to identifying domains in pro-
teins, in this work �i� subject to clustering are the directional
cosines of the essential collective degrees of freedom, and
not translations and/or rotations of individual atomic groups
in the Cartesian space, which makes the formalism generi-
cally immune to fluctuations; �ii� no assumptions regarding
any elementary building blocks and/or interatomic interac-
tions are made, and therefore the formalism is universal and
applicable to any kind of systems; and �iii� the identification
of domains is intimately related to the essential dynamics of
proteins, which makes the formalism simple and physically
transparent, and its outcomes are easy to interpret. An ex-
ample of the domain identification with interpretations is
given below.

B. Example of correlated domains in protein G

This section gives an example of correlated dynamic do-
mains in the fragment B1 of protein G. The PDB structure
1igd was used for this purpose. A molecular dynamics tra-
jectory of the solvated protein was generated using the
GROMACS 3.2.1 code with the GROMOS96 force field �39�.
After equilibration, 2000 snapshots were taken every 0.1 ps.
This 0.2-ns trajectory was processed by PCA taking into ac-
count all atoms in the protein. For essential collective coor-
dinates, 10 principal components with the highest eigenval-
ues were used for this example �kmax=10� �40�. The direction
cosines of the collective coordinates En,


k have been repre-
sented by N points �N is equal to the total number of atoms�,
each corresponding to an individual atom, in the 3kmax-
dimensional space of essential collective motions. In this
space, points that are located close to each other represent a
strong correlation in motion of corresponding atoms. To ob-
tain dynamic domains, the N points have been clustered us-
ing the nearest-neighbor technique �41�. The advantage of
this technique it that no structural property, such as, e.g., the
number of domains, needs to be postulated. A potential chal-
lenge, however, is that the interdomain distance d needs to be
identified, which defines the maximum distance in the
3kmax-dimensional space, for the corresponding atoms to be-

long to the same domain �42�. The identification of the do-
mains is sensitive to the selection of d, and the consistent
magnitude of d depends on the dynamics of a particular pro-
tein. Thus, Fig. 1�a� shows a dependence of the number of
domains in protein G as a function of the distance d, and Fig.
1�b� shows the total number of atoms that are included in
domains as a function of d �43�. From the figures it is evident
that a minimum distance dmin can be identified, beyond
which no correlated domains can be found. In Fig. 1�a� this
distance is close to 0.002. A maximum interdomain distance
dmax
0.0065 is also visible, for which most of the protein
molecule is recognized as a single domain. This is demon-
strated also by Figs. 1�b� and 1�c�, which show the total
number of atoms in all domains, Ntot, the number of atoms in
the largest domain, N1, and their difference Ntot−N1 as func-
tions of d. From Fig. 1�c� it is possible to identify the value
d
0.0038–0.0040, which maximizes the difference Ntot
−N1 and therefore provides the most informative breakdown
of the protein into domains. Note that the dependence of the
total number of atoms involved in domains in Fig. 1�b�
shows a trend to saturate at distances d
0.0038–0.0042,
which is close to the optimum distance d defined from Fig.
1�c�. The impact of the interdomain distance is addressed
further in Sec. IV D, whereas here, the optimum interdomain
distance d=0.0039 is adopted as a consistent condition for
clustering �43�.

Figure 2�a� shows three largest dynamic domains that
have been identified in protein G. In the figure, the domains

FIG. 1. The number of domains in fragment B1 of protein G
containing more than two atoms, as a function of the interdomain
distance d �a�; the number of atoms in all domains, Ntot �solid line�,
and the number of atoms in the largest domain, N1 �dashed line�, as
functions of d �b�; and the difference Ntot−N1 �c� �42�.
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are shown with green, red, and blue colors, whereas atoms
that do not belong to the three largest domains are colored
gray. It can be seen, first of all, that the domains form com-
pact groups of atoms. This is an interesting and promising
result, since the clustering formalism employed in this paper
does not require any proximity of atoms’ locations in the
primary, secondary, or tertiary structure. By the definition, a
proximity in the 3kmax-dimensional space of essential collec-
tive motions reveals only directional correlations in motion.
The fact that these correlations identify compact atomic
groups confirms the viability of the clustering formalism.
Another noticeable feature is that some side groups con-
nected to the correlated clusters have not been recognized as
belonging to these clusters. Understandably, the side groups
have less spatial constraints and more flexibility in compari-
son to the main-chain groups, which results in a weaker cor-
relation.

Table I compares the residue sequences of the domains
with the secondary structure in protein G, and Fig. 2�b�
shows the corresponding schematic sketch. From both the
table and the figure, it can be seen that some sequences of
residues in the domains follow both the primary and second-

ary structure in the protein. Thus, the first domain in Table I,
which is colored green in Fig. 2, follows closely the 
-helix.
At the same time, the second domain �colored red� contains a
part of the first �-hairpin as well as a part of the second
�-hairpin, which are adjacent to each other in the tertiary
structure, but quite remotely separated in the main chain. The
third domain �colored blue� contains the �3-�4 loop in the
second �-hairpin.

To conclude, the present theory leads to a dynamically
consistent definition of correlated domains in proteins. In the
example considered, the identified domains are composed of
compact groups of atoms. The domains have also shown a
reasonable match with the secondary structure; however,
there is no complete similarity. Some domains can contain
entire elements of secondary structure �with the exception for
flexible endgroups�, other domains include only parts of such
elements, and still others are composed of different elements
that are located near each other in the tertiary structure.

C. Role of the number of essential coordinates kmax

In the conventional PCA of molecular dynamic trajecto-
ries, the number of essential coordinates kmax is not a well-
established quantity, so that an appropriate kmax is defined in
each case individually �44�. In the present theory, the number
of essential coordinates affects the structure of the projection
operator P �see Eq. �8� and Sec. IV A�. Perhaps the most
simple and obvious outcome of this dependence is the di-
mensionality 3kmax of the space of directional cosines Ei

k,
where correlated dynamic domains are identified. The sketch
in Fig. 3 clarifies the impact of this dimensionality on the
identification of dynamic domains. The plane �E1-E2� in Fig.
3 represents a “high-dimensional” essential space, the axis
E1 represents a “low-dimensional” subspace, and the points
represent sets of the directional cosines for individual atoms.
As can be seen in Fig. 3, a high-dimensional essential space
reveals differences in positions of the points that cannot be
captured in a low-dimensional subspace. At the same time,
clustering in the subspace is apt to reveal subtle features of
the projection into this subspace, not all of which are cap-
tured through clustering with a higher dimensionality. As a
result, there is no direct correspondence between the out-
comes of clustering with different values of kmax. Thus, at-

FIG. 2. �Color� Three largest domains identified in protein G for
kmax=10: general view �a� and schematic �b�. The domains are
shown with green, red, and blue.

TABLE I. Comparison of domains identified in protein G with
the secondary structure.

Three largest domains
identified in this work for kmax=10 Secondary structure

Domaina Residues Element Residues

1 26–41 
-helix 28–42

2 10–13; 58–61 First �-hairpin:
�1- and �2-strands

6–25

3 50–57 Second �-hairpin:
�3- and �4-strands

47–60

aThe domains labeled by 1, 2, and 3 are shown in Fig. 2 with green,
red, and blue, respectively.
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oms that do not belong to any domain in a space kmax1 can be
recognized as a part of a domain in its subspace kmax2
�kmax1 and vice versa.

As an example, Fig. 4 shows three largest domains iden-
tified in protein G with kmax=1, 2, 5, 10, 20, and 40 �45�.
When only one essential coordinate is used, kmax=1, does the
domain structure show a long-range network traversing the
entire four-strand �-sheet. When kmax increases, correlations
along the individual �-strands become more pronounced. At
the same time, correlations across the �-sheet become lim-
ited to three �-strands with kmax=2 and include only pairs of
�-strands with kmax=5 and higher. After kmax reaches 10, a
further increase in kmax does not lead to any significant
changes in the domain system. Consistently reproduced with
increasing kmax are �i� the domain containing the 
-helix
�colored green in Fig. 4�, �ii� the domain containing a part of
the �1-strand �shown in red�, and �iii� the domain containing
the �3-�4 loop �shown in blue�. The only exception is the
region of the �4-strand between residues 58 and 61, which is
identified either in or out the second domain when kmax
changes. Evidently, the position at the C-terminus makes this
region moderately flexible, which results in the variability of
its identification. This said, identification of domains is
largely robust when kmax increases beyond 10. It worth not-
ing that the dimensionality of the essential space kmax=10 at
which the robustness is reached corresponds to approxi-
mately 90% of the total displacement. The fact that robust-
ness is observed for the essential dimensionalities that
sample 90% of the total displacement or more is in lines with
the basic assumption of this theory. Indeed, when doing the
Taylor expansion in Eq. �11�, it has been assumed that the

displacement related to the essential motions, X� E, is signifi-
cantly larger than the fluctuations, which is compatible with

the condition �X� E� / �X� �
0.9 at which robustness is reached.
A further discussion of the structural trends seen in Fig. 4

is given in the next section. At this point, the conclusion is
that identification of domains with various numbers of essen-
tial coordinates, kmax, reveals complementary aspects of the

protein’s dynamics. Clustering in low-dimensional subspaces
reveals the structure of the averaged motion in the corre-
sponding projections, whereas using large kmax provides a
more complete accounting for the motion variability over
multiple essential dimensions. Robustness of the domain
identification is reached only with sufficiently large kmax,
which in the case of protein G is close to 10. This is consis-
tent with the basic requirement of the present theory, for the
essential motion encompasses a major portion of the total
displacement to provide a compatible representation of pro-
tein dynamics.

D. Comparison with NMR experiments

The dynamics of proteins has been extensively studied by
nuclear magnetic resonance �NMR� methods �46–50�. Thus,
numerous published NMR results for protein G �49–56�, in
principle, contain a rich pool of various dynamic informa-
tion. However, explicit quantitative interpretation of NMR
experiments in terms of protein’s structure is an extremely

FIG. 3. A sketch illustrating identification of domains with dif-
ferent numbers of essential coordinates kmax. The plane �E1-E2�
represents a “high-dimensional” essential space, and the axis E1

represents a “low-dimensional” subspace. The dashed lines indicate
the hypothetic domains identified with the different
dimensionalities.

FIG. 4. �Color� Comparison of three largest domains identified
in protein G for kmax=1, 2, 5, 10, 20, and 40 �45�.
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challenging task for a number of reasons of both technical
and fundamental origins �46–50�. This section gives an ex-
ample, how comparison of the theory with NMR experi-
ments can be employed to interpret some of the observations.

Perhaps the most often reported and well-reproduced ex-
perimental dynamic characteristic for protein G is the gener-
alized order parameter S2 �47,48�, which represents the rela-
tive flexibilities of the protein’s backbone locally for each
residue. A number of experimental methodologies to obtain
S2 exist, which differ in the time scale addressed, kind of
NMR data employed to derive S2, model assumptions made,
etc. Considered here are the most general properties of the
order parameter S2, which have been repeatedly observed in
various studies. Most of these trends can be seen in Fig. 5,
which shows examples of the S2 profiles in protein G ob-
tained by three independent research groups �52,54,55�
through various techniques �see also caption to Fig. 5� �57�.
It can be seen that consistently reproduced are high S2 values
in the regions of the 
-helix, �1-strand, and �4-strand,
which indicates that these regions are relatively rigid. In con-
trast, the loop between the �1- and �2-strands, the adjacent
region of the �2-strand, and the loop between the 
-helix
and the �3-strand are recognized as regions of relative soft-
ness with smaller parameters S2.

It is believed that the order parameter S2 is not interpret-
able directly in terms of dynamic domains �47,50�. Qualita-
tive comparisons are possible, however. As an example, con-

sider the theoretical order parameter SD=M̃� /M̃max, defined
individually for each residue and equal to the ratio of the

mass of the corresponding domain M̃� to the mass of the

largest domain M̃max. Thus, all residues within the same do-
main have equal order parameters SD by definition. In the
largest domain all residues have SD=1, whereas SD=0 for
residues that are not part of any domain. The domain order
parameter SD therefore indicates whether a residue is a part
of a domain and how large this domain is. Figure 6 shows a
series of plots of the theoretical parameter SD in protein G
obtained with kmax=10. It should be particularly emphasized
that the computed function SD presented in Fig. 6 is not a
theoretical analog of the experimental parameter S2. The
definition and meaning of the values SD and S2 are different
and, therefore, a direct quantitative comparison of the depen-
dencies in Figs. 5 and 6 is not possible. However, the quali-
tative trends exhibited by two dependences are comparable.
Indeed, within sufficiently large domains, the backbone can
be considered as relatively inflexible in motion. The corre-
sponding residues will therefore have both high values of SD
�because they belong to large domains� and high order pa-

FIG. 5. Experimental NMR-derived order parameters S2 for
streptococcal protein G �57�: �a� adapted from Fig. 7 of Ref. �55�
and reprinted in part with permission of The National Academy of
Sciences of the USA; �b� adapted from Fig. 1�a� of Ref. �52� and
reprinted in part with permission of the American Chemical Society.
In �a�, the bold line shows the relaxation-derived order parameter in
the subnanosecond time scale �54� and thin line shows the order
parameter derived from RDC data in the submillisecond scale �55�.
In �b�, relaxation data were employed representing the subnanosec-
ond regimes �52�. The circles, squares, and triangles correspond to
different mutants introduced to minimize cross-strand interactions
�52�.
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FIG. 6. The domain order parameters SD computed for kmax

=10 and progressively increasing interdomain distance d. See Fig. 7
for the largest domains identified in each case.
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rameters S2 �because large domains exhibit a relative rigid-
ity�. Otherwise, off-domain residues and those in small do-
mains, which have low SD values, should be less restricted in
their motions, indicating the points of softness characterized
by low S2 as well. Thereby relative changes of the theoretic
order parameter SD as a function of the residue can be com-
pared to similar relative changes of the experimental param-
eter S2 �58�.

It is convenient to analyze these structural trends by vary-
ing the interdomain distance d that affects the breakdown of
the protein into dynamic domains as outlined in Sec. IV B.
Figure 6 presents the theoretical order parameters SD ob-
tained for protein G with kmax=10 and various interdomain
distances d, and Fig. 7 shows the corresponding domains.
For the largest d values of 0.0054 and 0.0051, almost all
protein is recognized as a single domain, with the exception
of the N-terminus and the loop between the �1- and
�2-strands. Accordingly, SD=1 everywhere except for these
regions, which thereby are recognized as the points of soft-
ness in agreement with the NMR experiments. When d de-

creases, a progressively increasing portion of the �2-strand
is recognized as a region of softness. Residues 21 and 22,
however, tend to ally with the rest of the �-sheet, which
results in the oscillatory behavior of SD in the region of the
�2-strand for d=0.0048. For d=0.0048 and 0.0045, two
separate domains are distinguished, one containing the

-helix and another containing most of the �-sheet, which
results in a moderate decrease of the SD level within the
smaller domain. For d=0.0045 and less, the loop between
the 
-helix and the �3-strand, as well as the adjacent region
of the �3-strand, acquires low SD values, indicating a relative
softness, which again agrees with the experiments. At d
=0.0042, two different domains are recognized in the
�-sheet, whose masses are considerably less than that of the
domain containing the 
-helix, which affects the shape of the
profile. Nevertheless, the theoretical regions of the relative
rigidity and softness show a clear qualitative resemblance
with the experimental ones.

The predicted regions of relative softness are compared
with the experimentally determined ones in Table II. Here,
the theoretical regions of maximum softness are determined
from Fig. 6 considering the residues for which the value SD
is close to zero. The plot for d=0.0045 has been employed
for this purpose, which corresponds to the maximum d value
at which two major regions of softness are well recognized.
The experimental regions of softness were determined from
the major minima in the S2 dependencies in Fig. 5. The close
overlap of the theoretical and experimental regions of soft-
ness is obvious from Table II. This demonstrates that the
major regions of relative softness emerging from the experi-
mental S2 profiles for protein G �obtained in various time
regimes from subnanosecond �52,54� to submillisecond �55�
scale� match very well those extracted from the domain sys-
tem identified theoretically with the representative set of es-
sential coordinates.

In addition to the conventional studies of the S2 profiles,
new methodologies for extracting complementary structural
information from NMR experiments have undergone a rapid
development �48,49�. Thus, in a recent study �55�, analysis
of residual dipolar coupling �RDC� was employed to obtain
distributions of amplitudes of backbone motions in protein
G. Some of these observed distributions exhibit a long-range
networklike structure traversing the entire �-sheet, with ad-
jacent �-strands showing similar motional amplitudes. These
long-range cross-strand correlations, which have been inter-
preted as resulting from hydrogen bonding between adjacent
�-strands �49,55�, seemed to differ radically from the struc-
ture emerging from the conventional S2 measurements.

FIG. 7. �Color� Comparison of the largest domains in protein G
for various interdomain distances d and kmax=10.

TABLE II. Comparison of predicted regions of relative softness
�residue numbers� with experimental NMR S2 data for protein G.

This theory NMR data �52�a NMR data �54� NMR data �55�

15–23 14–20 14–20 15–19

43–46 45–48 45–47 45–47

aThe residue numbering system from Ref. �52� �Fig. 5�b�� has been
amended to match that adopted in Fig. 5�a� and in the present
theory.
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In this work, a similar long-range cross-strand symmetry
as reported in Ref. �55� is obtained by clustering with a
single essential coordinate. As can be seen in Fig. 4 for
kmax=1, the domain colored red includes the adjacent regions
in all four �-strands and the domain colored purple com-
prises a part of the �1-�2 loop, the C-terminus, and a part of
the loop between the 
-helix and the �3-strand. Less in-
volved in the long-range interstrand interactions are the re-
gions shown in gray. These regions also traverse the entire
�-sheet. The overall symmetry of the domain system is com-
patible with the directions of the interstrand hydrogen bond-
ing, and the structure of the alternating cross-strand domain
resembles closely that detected in Ref. �55� for the motional
amplitudes.

Figure 4 shows however, that the extended domain struc-
ture traversing the entire �-sheet is obtained only with kmax
=1 and gradually disappears when the number of essential
coordinates, kmax, increases. This can be easily explained in
light of the discussion of the role of the dimensionality kmax
in Sec. IV C. The reason is that in protein G, the impact of
the cross-strand bonding is superimposed over more pro-
nounced interactions originating from the spatial constrains
in the primary, secondary, and tertiary structures. These ma-
jor impacts are fully captured only with a sufficient number
of essential coordinates �kmax�10�. The corresponding do-
main system accounts for all contributions; however, the im-
pact of the cross-strand bonding is mostly overridden by
stronger interactions. Otherwise, when only one essential co-
ordinate is used for clustering, the complex multidimensional
dynamics is not captured. Instead, the impact of interactions
that have a simpler topology emerges. In the case of the
�-sheet in protein G, clustering with kmax=1 reveals correla-
tions originating from the cross-strand bonding, which has a
simple quasilinear geometry. Remarkably, a similar impact
of the cross-strand interactions was observed experimentally
in Ref. �55� through the RDC analysis, which is particularly
sensitive to weak conformational fluctuations �56�.

In conclusion, the domain system predicted for protein G
with the dynamically representative set of essential coordi-
nates, kmax=10, identifies the major regions of rigidity and
softness in agreement with the experimentally determined
profiles of the order parameter S2 �52,54,55�. At the same
time, the domains obtained with only one essential coordi-
nate match the RDC-based experimental distributions of
backbone motions �55� that reflect the symmetry of the
cross-strand hydrogen bonding.

The ability of the present approach to identify correlations
with varying essential dimensionalities has a strong potential
for interpretation of NMR data. The idea is to compare NMR
results with the outcomes of the theoretic clustering and de-
fine the essential dimensionality at which the best match with
experiment is achieved. As discussed above, the clustering
with low dimensionalities reveals subtle features in the sim-
plified �averaged� motion, whereas higher dimensionalities
provide a more comprehensive and dynamically consistent
description. Accordingly, NMR-derived dynamic data that
can only be reproduced through the low-dimensional cluster-
ing provide insight into the most delicate details of protein
structure; however, only those features that are identified
theoretically with sufficiently high-dimensional essential

spaces would be fully representative of the coarse-grained
dynamics in the macromolecule.

E. Equations of motion for domains

A distinguishing feature and one of major advantages of
the present identification of dynamic domains is that this
approach is based on a rigorous theoretical background. Not
only does this make the results transparent and easily inter-
pretable, but the domain system identified is also available
for further theoretical developments. In particular, after cor-
related domains are identified in a macromolecule, the
coarse-grained dynamics can be described analytically by
considering interaction of the domains with each other and
with the environment. In this section, the formalism devel-
oped in Sec. III is applied to derive generalized Langevin
equations for dynamic domains in a protein. The equations
derived in this section are exact within the framework
adopted in Sec. III. The only assumption made is that motion
of a domain can be represented by its center of mass.

In the following discussion, each domain is characterized

by the number of atoms involved N�, the domain’s mass M̃�,

and the coordinates of the center of mass X̃

� :

M̃� = 	
n��N��

mn, �43�

X̃

��t� =

1

M̃�
	

n��N

� �

mnXn
E�t� . �44�

Here � denotes the domain, �=1,2 , . . . ,�max, 
 denotes the
x, y, or z coordinates, and Xi

E are coordinates of individual
atoms. The expression n� �N


�� on the right-hand side of Eq.
�44� means that the summation is performed only for the 
th
coordinates of atoms involved in the domain �.

The coordinates Xn
E can be expressed in terms of the es-

sential collective coordinates xk by Xn
E=	l=1

kmaxEn
kxk, after

which Eq. �44� takes the form

X̃

��t� = 	

k=1

kmax

T
�,kx
k�t� , �45�

where T�
,k= 1

M̃�
	n��N



� �mnEn

k. Double differentiation of Eq.
�45� over time and replacing of ẍk with Eq. �28� gives

X̃
¨



	 = − 	

k,l=1

kmax

T�
,k�kl
−1�U

�xl − 	
k,l=1

kmax

T�
,k� 	kl�t − ��ẋl���d�

+ 	
k=1

kmax

T�
,kr
k�t� . �46�

Equation �46� is a formal equation of motion for coarse-
grained degrees of freedom represented by the coordinates of

domains’ centers of masses X̃

� . If the total number of such

coarse-grained degrees of freedom, 3�max, is equal to the
number of the collective coordinates, kmax, it is possible to

make the inverse transform xk=	s=1
kmaxTks

−1X̃s and also the

change of variables, �U
�xk =	s=1

kmaxTsk
�U

�X̃s
, where the index s
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=1,2 , . . . ,kmax replaces the pair ��
�. As a consequence, Eq.
�46� is converted into the generalized Langevin equation for
the coarse-grained degrees of freedom,

X̃
¨ s = − 	

l=1

kmax

Vsl
�U

�X̃l
− 	

l=1

kmax � �sl�t − ��X̃˙ l���d� + �s�t� ,

�47�

where

Vsl = 	
p,q=1

kmax

Tsp�pq
−1Tlq, �48�

�sl�t� = 	
p,q=1

kmax

Tsp	pq�t�Tql
−1, �49�

�s�t� = 	
l=1

kmax

Tslr
l�t� . �50�

Equation �47� provides a system of generalized Langevin
equations for the coarse-grained degrees of freedom. The
equations represent collective dynamics in a protein through
a few interacting domains embedded in a dissipative me-
dium. The equation can be entirely parametrized based on
the dynamics of essential collective motions discussed in
Sec. III. If the effective masses, mean forces, and memory
kernels are available for a set of essential collective coordi-
nates �see, e.g., Eqs. �29�–�31��, then the corresponding pa-

rameters �U /�X̃s, Vsl, and �sl�t� can be identified.
An important outcome of the theory is that the maximum

number of addressable coarse-grained degrees of freedom,

X̃s, is equal to the number of essential collective coordinates,
xk. Thus, if kmax=3, the corresponding set of three coarse-
grained equations of motion can represent the �x ,y ,z� coor-
dinates for one domain or it can describe particular degrees
of freedom belonging to two or three different domains. In a
general case, the number of coarse-grained degrees of free-
dom cannot be larger than the number of essential collective
coordinates kmax employed to identify the dynamic domains
in the protein.

V. DISCUSSION

For more extensive applications of the present theory, all
functions and parameters involved must be appropriately
quantified. In particular, subject to such analysis are the fol-
lowing: �i� the effective mass matrix �−1 in Eq. �29�; �ii� the
mean force associated with each of the essential collective
coordinates, −�U /�xk in Eq. �30�, or the potential of mean
force U as a function of the collective coordinate xk; �iii� the
memory kernel matrix 	�t� in Eq. �31�; �iv� the number of
collective coordinates, kmax, and the particular set of these
coordinates.

The effective mass matrix �−1 is the most straightforward
to determine and is simply provided analytically by Eq. �29�
for a predefined set of collective degrees of freedom. The

mean force −�U /�xk and the memory kernel matrix 	kl�t�, in
principle, can also be derived analytically employing Eqs.
�20�, �30�, and �31�. To accomplish this, however, the equa-
tion of motion �10� needs to be integrated to provide the

force F� as a function of time for the entire trajectory. Poten-
tially, the theory developed in Sec. III can be employed as an
advanced integrator for the molecular-dynamic trajectories
given by Eq. �10�, thereby providing a self-consistent solu-
tion of Eqs. �10� and �28�. However, this requires a special
formalism of integration, which still needs to be developed
and tested. For practical purposes at the present stage of the
theory, the mean force −�U /�xk and the memory matrix 	kl�t�
can be evaluated from molecular-dynamic trajectories. Thus,
the potential of mean force is given by�9,19,21�

U�xk� = − �−1 ln���xk�� , �51�

where ��xk� is the equilibrium phase-space density corre-
sponding to the coordinate xk. The requirement here is that
the molecular-dynamic simulation must generate a canonical
ensemble that satisfies the condition of ergodicity �9,19,21�.
The memory kernel 	kl�t� can also be derived from
molecular-dynamics trajectories. The conventional way
adopted in the literature employs various kinds of the
memory equation for the velocity autocorrelation function
�ẋk�t�ẋk�0��, which is derived from the generalized Langevin
equation through a well-known procedure �15,21,28,59�.
Two slightly different approaches have been reported. Thus,
the procedure described in Ref. �59�, when applied to Eq.
�28�, leads to the following set of equations for �ẋk�t�ẋk�0��,

�ẋk�t�ẋk�0�� = − 	
l=1

kmax

�kl
−1� �U

�xl x
k�0��

− 	
l=1

kmax � 	kl�t − ���ẋl���xk�0��d� , �52�

whereas the approach adopted in Refs. �15,21� generates a
different set of equations,

�ẍk�t�ẋk�0�� = − 	
l=1

kmax

�kl
−1� �U

�xl ẋ
k�0��

− 	
l=1

kmax � 	kl�t − ���ẋl���ẋk�0��d� . �53�

The correlation functions �ẋk�t�ẋk�0��, � �U
�xl xk�0��, � �U

�xl ẋk�0��,
and �ẋl���xk�0�� can be evaluated numerically from
molecular-dynamic trajectories �60�, and any of the sets of
integral equations �52� and �53� can then be solved.

Identification of the number and particular set of the es-
sential collective coordinates, kmax, is another important
point. In Sec. II it has already been noted that a physical
criterion other than ranking of the mean-square displace-
ments is required to identify the set of essential coordinates.
A solution can be found if one recalls the major assumptions
of this theory: �i� The displacements related to the essential
motions are significantly larger than the fluctuations �to make
the Taylor expansion in Eq. �11��, and �ii� the essential mo-

DYNAMICS OF ESSENTIAL COLLECTIVE MOTIONS IN … PHYSICAL REVIEW E 76, 051918 �2007�

051918-13



tions are significantly slower than the fluctuations �which
makes Eq. �14� solvable to provide Eq. �15��.

Evidently, selection of the set of essential collective coor-
dinates must be consistent with both assumptions. As has
been shown in Sec. IV C, condition �i� is equivalent to re-
questing robustness of the domain system as a function of
kmax combined with a standard ranking of the collective co-
ordinates xk according to the respective eigenvalues �k.
However, this only determines the lowest possible value of
kmax, leaving unclear whether any limitations exist when kmax
increases. A solution that emerges from the present theory is
a complementary ranking according to the decay times �xx
and �	, which correspond to the aucorrelation function
�xk�t�xk�0�� and to the memory kernel, 	kk�t�, respectively, for
each of the potentially essential coordinates xk. Indeed, the
criterion �xx��	 in fact requires that motion along the corre-
sponding collective coordinate is slow compared to fluctua-
tions in the environment. This is consistent with results re-
ported to date �20,21,28�, according to which the decay time
�xx is significantly larger than �	 for major essential coordi-
nates in proteins. Thus, the requirement �xx��	 employed
together with the standard ranking of the eigenvalues of the
covariance matrix provides a sufficient criterion for identifi-
cation of both lower and upper limits for the number of
essential coordinates.

A related question is how long the total trajectory sam-
pling time T should be to obtain consistent results. Thus, for
any realistic sampling time T, there may exist slow modes
that are not captured well because their characteristic time is
larger than T �21�. These undersampled modes present a
problem for the formalism developed here, since they com-
bine small eigenvalues �k with large decay times �xx and thus
do not fall either into the category of essential modes or into
the category of fluctuations. A solution is to identify and
eliminate the undersampled modes or example, through con-
ventional drift reduction techniques.

Another aspect of trajectory sampling that is worth ad-
dressing is whether a trajectory that takes a time T should be
described by a single set of collective coordinates or must
there be a local subsampling over smaller time intervals
�T1 ,�T2 , . . . with respective subsets of essential coordinates.
In the first case, the covariance matrix described by Eq. �1�
needs to be computed for the entire trajectory time T,
whereas in the second case the matrix has to be derived for
the successive smaller time intervals �T1 ,�T2 , . . . and the
entire formalism needs to be applied to each interval indi-
vidually. A related question is whether or not a set of collec-
tive coordinates identified for a given trajectory time T can
be employed to describe dynamics of the protein over longer
times. In the literature, pertinent results are scarce. Accord-
ing to Ref. �21�, if a single collective coordinate is consid-
ered for the protein neurotensin, the average direction of this
collective coordinate changes rather significantly with a
characteristic time of the order of at least 10 ns. This indi-
cates that the essential collective space changes with time
along the phase trajectory, and thus caution is required in
both identifying the appropriate time intervals for sampling
as well as extrapolating the obtained results over longer
times. In particular, a variability of the set of essential col-
lective coordinates with time should result in dynamic

changes in correlated domains that have been introduced in
Sec. IV. The number of major domains, their size, composi-
tion, and interaction with the environment are expected to
vary in the case if the set of essential collective coordinates
changes.

The probable dynamic variability of correlated domains
provides a straightforward approach to characterizing the sta-
bility of the protein’s conformation, as well as presents a
fundamental challenge for the theory of collective dynamics
in proteins. The positive outcome is that the formalism of
identification of domains introduced in Sec. IV offers a trans-
parent and efficient methodology to verify whether the con-
formation space of a protein remains stable over a trajectory.
If the number, size, content, and other dynamic characteris-
tics of major domains do not depend significantly on the
sampling interval, then the protein’s conformation space can
be considered to be largely stable. Otherwise, any significant
changes in the conformation space would generate easily de-
tectable changes in the domains. At the same time, the prob-
able variability of domains presents a fundamental challenge
for the formalism of protein dynamics, since the formalism
needs to be developed further to include the variability of
domains in a consistent way. Solving this major challenge
appears to be one of most important and promising mile-
stones in the future development of the theory of protein
dynamics.

VI. SUMMARY

�i� This paper introduces a general formalism to derive the
equations of motion for essential collective modes in a dy-
namic system that is assumed to be a protein molecule em-
bedded in a solvent. Using the projection operator technique
�11� a system of coupled generalized Langevin equations is
derived for essential collective coordinates, which are gener-
ated by principal component analysis of molecular dynamic
trajectories. The number of the essential degrees of freedom
is not limited in the theory. Unlike other studies, the present
theory is valid for any number of essential degrees of free-
dom. In particular, coupling of the degrees of freedom is
described. The theory includes the model with a single es-
sential degree of freedom, as a particular case.

�ii� An explicit analytic relation is established between the
generalized Langevin equation of motion for the essential
collective coordinates provided by PCA and that for the all-
atom phase trajectory projected onto the subspace of essen-
tial collective degrees of freedom. Potentially, this relation
allows the employment of the developed formalism as an
advanced integrator for molecular dynamic trajectories.

�iii� The introduced formalism is applied to define corre-
lated dynamic domains in a macromolecule. The domains are
defined as groups of atoms that show a strong dynamic cou-
pling in the generalized Langevin equation of motion and are
identified through clustering of directional cosines of the es-
sential collective degrees of freedom. Unlike other existing
approaches to identify domains in proteins, no assumptions
regarding the number of domains, their elementary building
blocks, or interatomic interactions are made. No additional
noise reduction is required, because the clustering is per-
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formed in the space of essential collective motions where
fluctuations are eliminated. Since the formalism of domain
identification has been developed based on a rigorous theo-
retical background, the formalism is universal and physically
transparent. An example of identification of dynamic do-
mains is provided for protein G. The example demonstrates
that the identified domains are composed of compact groups
of atoms, although the spatial proximity of atoms is not re-
quired by the formalism. The identified domains show a rea-
sonable match with the primary and secondary structure, but
there is no complete similarity. Some domains contain entire
elements of the secondary structure, others include only parts
of such elements, and still others are composed of different
elements that are located close to each other in the tertiary
structure of the protein.

�iv� The role of the number of essential coordinates, kmax,
in defining correlated domains is analyzed. It is demonstrated
that identification of domains with various essential dimen-
sionalities kmax reflects complementary aspects of the domain
structure. Using low dimensionalities reveals subtle features
of the averaged motion in a particular projection, whereas
higher dimensionalities, at which robustness of the domain
system is achieved, provide a more complete and dynami-
cally consistent description. For the example of protein G,
robustness of the domain system with increasing essential
dimensionality kmax is reached only with sufficiently high
dimensionalities, kmax�10. This is consistent with the basic
requirement of this theory, for the essential motion encom-
passes a major portion of the total displacement to provide a
valid representation of protein’s dynamics.

�v� It is demonstrated that the theory introduced has a
strong potential to interpret experimental NMR measure-
ments. The idea is to compare experimental NMR results
with the outcomes of the theoretic clustering and defining the
essential dimensionality at which the best match with experi-
ment is reached. NMR-derived dynamic data that are only
reproduced through low-dimensional clustering provide in-
sight into the most delicate details of protein structure; how-
ever, only those features that are identified theoretically with
sufficiently high essential dimensionalities would be fully
representative of the coarse-grained dynamics in the macro-
molecule. An example of such an analysis is provided for
protein G. It is shown that the symmetry of the domain sys-
tem identified with the single essential coordinate, kmax=1,
resembles the long-range network of interstrand correlations
extracted from the RDC analysis of backbone motions,
whereas the robust domain system predicted with the set of
ten collective coordinates, kmax=10, matches the major re-
gions of rigidity and softness in the conventional experimen-
tal profiles of the order parameter S2. Thus, by employing

different essential dimensionalities kmax, two radically differ-
ent sets of NMR measurements have been matched theoreti-
cally, the complementary nature of the measurements con-
firmed, and the physical meaning of the observed differences
explained.

�vi� A distinguishing feature of the present identification
of dynamic domains is that this approach is rigorously justi-
fied theoretically, which makes the results available for fur-
ther theoretical developments. In this work, the dynamic cor-
related domains are employed as a starting point to construct
an analytic coarse-grained model, which describes conforma-
tional motions in a protein through the system of interacting
domains embedded in a dissipative medium. For the first
time, generalized equations of motion for the Cartesian co-
ordinates of the dynamic domains have been derived and
parametrized analytically based on the equations of motion
for the essential collective coordinates.

�vii� The physical requirements adopted in the formalism
are discussed in detail. The major requirement is categoriz-
ing of collective modes either as essential degrees of free-
dom or as fluctuations. The essential displacements must be
large and slow, whereas the fluctuations must be weak and
high frequency. These requirements provide a physical crite-
rion to identify essential degrees of freedom from the entire
set of collective coordinates generated by PCA. In addition
to the standard ranking of the mean-square displacements,
the collective coordinates should be ranked according to the
decay times of their autocorrelation functions. Another major
requirement is that the number of essential collective coordi-
nates cannot be less that the number of coarse-grained de-
grees of freedom that is desired to address.

�viii� Potential applications and further developments of
the formalism are discussed. A fundamental challenge and
one of most important and promising future milestones is the
extension of the formalism to describe dynamic variability of
correlated domains. In the present condition, the formalism
offers a broad range of new opportunities to characterize and
compare collective conformational behaviors in macromol-
ecules based on their molecular dynamic trajectories, as well
as for comparison of molecular-dynamic simulations with
experiments and interpretation of experimentally derived dy-
namic information.
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